JEE-Main-24-02-2021-Shift-2

PHYSICS

Question: Two electrons are fixed at a separation of 2d from each other. A proton is placed at the midpoint and displaced slightly in a direction perpendicular to line joining the two electrons. Find the frequency of oscillation of proton.

Options:

(a) $f=\frac{1}{2 \pi} \sqrt{\frac{2 k e^{2}}{m d^{3}}}$
(b) $f=\frac{1}{2 \pi} \sqrt{\frac{k e^{2}}{m d^{3}}}$
(c) $f=\frac{1}{2 \pi} \sqrt{\frac{k e^{2}}{2 m d^{3}}}$
(d) None of these

Answer: (a)

Solution:

$F \cos \theta .2=m \omega^{2} x$
$\Rightarrow \frac{k e . e}{\left(d^{2}+x^{2}\right)} \cdot \frac{2 x}{\sqrt{d^{2}+x^{2}}}=m \omega^{2} x$
$\Rightarrow \frac{2 k e^{2} x}{d^{3}}=m \omega^{2} x \quad \quad$ (taking $\mathrm{x} \ll \mathrm{d}$]
On solving-
$f=\frac{1}{2 \pi} \sqrt{\frac{2 k e^{2}}{m d^{3}}}$

Question: The weight of a person on pole is 48 kg then the weight on equator is?
Give [$\mathrm{R}=6400 \mathrm{~km}$]
Options:
(a) 48
(b) 48.83
(c) 47.84
(d) 47

Answer: (c)

Solution:

At pole
$\frac{G M m}{R^{2}}=48 \mathrm{~kg} \ldots(i)$
At equator
$\frac{G M m}{R^{2}}-m R \omega^{2}=x \ldots(i i)$
Dividing eq. (ii) by eq. (i)
$1-\frac{\omega^{2} R^{3}}{G M}=\frac{x}{48}$
On putting all the values in this eqn.
$x=47.83 \mathrm{~kg}$.

Question: Two bodies A \& B have masses $1 \mathrm{~kg} \& 2 \mathrm{~kg}$ respectively have equal momentum.
Find the ratio of kinetic energy?
Options:
(a) $1: 1$
(b) $2: 1$
(c) $1: 4$
(d) $1: 2$

Answer: (b)
Solution:
$K=\frac{P^{2}}{2 m}$
$\frac{K_{A}}{K_{B}}=\frac{m_{B}}{m_{A}} \quad$ [As momentum is same for both]

$$
=\frac{2}{1}
$$

Question: Which transition in hydrogen spectrum has the maxima frequency? Options:
(a) $3 \rightarrow 2$
(b) $5 \rightarrow 4$
(c) $9 \rightarrow 5$
(d) $2 \rightarrow 1$

Answer: (d)
Solution:

As n increases, difference between $n^{\text {th }}$ and $(n+1)^{\text {th }}$ orbit energy decreases.
So as per given options $2 \rightarrow 1$ transition will have maximum energy \& hence maximum frequency.

Question: A rod of mass M, length L is bent in the form of hexagon. Then MOI about axis passing through geometric centre \& perpendicular to plane of body will be ?

Options:

(a) $6 M L^{2}$
(b) $\frac{M L^{2}}{6}$
(c) $\frac{M L^{2}}{2}$
(d) $\frac{5 M L^{2}}{216}$

Answer: (d)

Solution:

$$
M, L
$$

$m=\frac{M}{6}$ and $a=\frac{L}{6}$
$I=6\left[\frac{m a^{2}}{16}+m\left[\frac{\sqrt{3} a}{2}\right]^{2}\right]$
$=6 m a^{2}\left[\frac{1}{12}+\frac{3}{4}\right]$
$=6 \times \frac{M}{6} \times \frac{L^{2}}{36} \times \frac{5}{6}$
$=\frac{5 M L^{2}}{216}$

Question: Find the time period of SHM of the block of mass M.

Options:

(a) $T=2 \pi \sqrt{\frac{M}{2 K}}$
(b) $T=2 \pi \sqrt{\frac{M}{K}}$
(c) $T=2 \pi \sqrt{\frac{2 M}{K}}$
(d) $T=2 \pi \sqrt{\frac{M}{4 K}}$

Answer: (a)

Solution:

Constant force doesn't change ω of the system. (Constant force means force that has constant magnitude and direction. In the direction of oscillation these forces have constant contribution.)
So, due to parallel combination of springs-
$K_{\text {eq }}=2 K$
Therefore, $\omega=\sqrt{\frac{K_{e q}}{M}} \Rightarrow T=2 \pi \sqrt{\frac{M}{2 K}}$

Question: A particle is projected on x axis with velocity v. A force is acting on it in opposite direction, which is proportional to the square of its position. At what distance from origin the particle will stop. [mass is m and constant of proportionality $\rightarrow \mathrm{k}$]
Options:
(a) $\sqrt[3]{\frac{m v_{0}^{2}}{k}}$
(b) $\sqrt[3]{\frac{3 m v_{0}^{2}}{k}}$
(c) $\sqrt[3]{\frac{3}{2} \frac{m v_{0}^{2}}{k}}$
(d) $\sqrt[3]{\frac{m v_{0}^{2}}{2 k}}$

Answer: (c)
Solution:

Let particle will stop at l distance
$\frac{-k x}{m}=\frac{v d v}{d x}$
$\int_{0}^{l}-\frac{k x^{2}}{m} d x=\int_{v}^{0} v d v$
$\frac{-k}{m} \frac{l^{3}}{3}=\frac{-v^{2}}{2}$
$\Rightarrow l=\sqrt[3]{\frac{3 m v_{0}^{2}}{2 k}}$

Question: Two cars are approaching each other each moving with a speed v. Find the beat frequency as heard by driver of one car both are emitting sound of frequency f_{0}.

Options:

(a) Beat frequency $=\frac{2 v f_{0}}{C-v}$
(b) Beat frequency $=\frac{2 v f_{0}}{C+v}$
(c) Beat frequency $=\frac{v f_{0}}{C-v}$
(d) None of these

Answer: (a)

Solution:

$f_{B}=f_{1}-f_{2}$
[Where f_{B} is beat frequency]
$=f_{0}\left(\frac{C+v}{C-v}\right)-f_{0}$
$\Rightarrow f_{B}=\frac{2 v f_{0}}{C-v}$

Question: Find the flux of point charge ' q ' through the square surface $A B C D$ as shown.

12 cm

Options:

(a) $\frac{q}{6 \epsilon_{0}}$
(b) $\frac{q}{\epsilon_{0}}$
(c) $\frac{q}{4 \epsilon_{0}}$
(d) $\frac{q}{2 \epsilon_{0}}$

Answer: (a)
Solution:

Lets assume a cube of slide a and charge is at it's centre.
So, from whole cube flux coming out $=\frac{q}{\epsilon_{0}}$

So, flux coming out from one surface $=\frac{q}{6 \epsilon_{0}}$
Question: If a solid cavity whose diameter is removed from a solid sphere of radius R, then the com of remaining part is at?

Options:

(a) $x=\frac{-R}{3}$
(b) $x=\frac{-R}{7}$
(c) $x=\frac{-R}{6}$
(d) $x=\frac{-R}{14}$

Answer: (c)

Solution:

$M=\sigma \pi R^{2}, m=-\sigma \pi\left(\frac{R}{2}\right)^{2}$
$x_{c m}=\frac{M(0)+m\left(\frac{R}{2}\right)}{M+m}=\frac{\left(\frac{m}{M}\right)\left(\frac{R}{2}\right)}{1+\frac{m}{M}}$
$\Rightarrow x_{c m}=\frac{-R}{6}$

Question: In a YDSE experiment, if Red light is replaced by violet light then the fringe width will be
Options:
(a) decrease
(b) increase
(c) may increase or decrease
(d) None of these

Answer: (a)
Solution:
$\beta=\frac{\lambda D}{d}$
As decreases for violet light, the fringe width will also decrease.
Question: The graph of V versus x in an SHM is (v : velocity, x : displacement) Options:
(a)

(b)

(c)

(d)

Answer: (d)

Solution:

A simple harmonic motion is an example of periodic motion. In simple harmonic motion, a particle is accelerated towards a fixed point (in this case, O) and the acceleration of the particle will be proportional to the magnitude of the displacement of the particle.

Question: If the de Broglie wavelengths of an alpha particle and a proton are the same, then the ratio of their velocities is:

Options:

(a) $\frac{1}{4}$
(b) $\frac{4}{1}$
(c) $\frac{1}{2}$
(d) 1

Answer: (a)

Solution:

$$
\begin{aligned}
& \frac{h}{m_{\alpha} v_{\alpha}}=\frac{h}{m_{p} v_{p}} \\
& \Rightarrow \frac{v_{\alpha}}{v_{p}}=\frac{m_{p}}{m_{\alpha}}=\frac{1}{4}
\end{aligned}
$$

Question: Find the current through the battery just after the key is closed.

Options:
(a) $\frac{9}{4} \mathrm{~A}$
(b) $\frac{9}{2} \mathrm{~A}$
(c) $\frac{9}{1} \mathrm{~A}$
(d) None of these

Answer: (a)

Solution:

Just after the key is closed, circuit will be

So current in the circuit
$I=\frac{9}{R_{e q}}=\frac{9}{4} \mathrm{Amp}$

JEE-Main-24-02-2021-Shift-2

CHEMISTRY

Question: S in BUNA-S stands for?
Options:
(a) Styrene
(b) Strength
(c) Stoichiometry
(d) Secondary

Answer: (a)
Solution: BUNA-S \Rightarrow Styrene butadiene
Question: Bond angle and shape of I_{3}^{-}ion is?
Options:
(a) 180° and $\mathrm{sp}^{3} \mathrm{~d}$
(b) 180° and $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(c) 90° and $\mathrm{sp}^{3} \mathrm{~d}$
(d) 90° and $\mathrm{sp}^{3} \mathrm{~d}^{2}$

Answer: (a)
Solution:

Question: The following conversion can take place by:

Options:

(a) (i) $\mathrm{Br}_{2} / \mathrm{Fe}$ (ii) $\mathrm{Sn} / \mathrm{HCl}$
(b) (i) $\mathrm{Br}_{2} / \mathrm{Fe}$ (ii) $\mathrm{Sn} / \mathrm{HCl}$ (iii) $\mathrm{NaNO}_{2} / \mathrm{HCl}$ (iv) $\mathrm{Cu}_{2} \mathrm{Br}_{2}$
(c) (i) $\mathrm{Cu}_{2} \mathrm{Br}_{2}$ (ii) $\mathrm{Sn} / \mathrm{HCl}$ (iii) $\mathrm{Br}_{2} / \mathrm{Fe}$
(d) None of these

Answer: (b)
Solution:

Question: According to Bohr's model which of the following transition will be having maximum frequency?
Options:
(a) 3 to 2
(b) 5 to 4
(c) 4 to 3
(d) 2 to 1

Answer: (d)
Solution: 2 to 1 (Lyman series)
Lyman series falls in UV region. Therefore higher energy than other radiations.
Question: Pbl_{2} given as $=0.1 \mathrm{M} ; K_{s p}=8 \times 10^{-9}$
Find solubility of $P b^{2+}$

Options:

(a) 1.4×10^{-3}
(b) 2×10^{-4}
(c) 1.26×10^{-3}
(d) 1.8×10^{-2}

Answer: (c)

Solution:
$K s p=4 s^{3}$
$8 \times 10^{-9}=4 s^{3}$
$s^{3}=2 \times 10^{-9}$
$s=1.26 \times 10^{-3}$
Question: Increasing strength towards nucleophilic attack ?

(I)

(II)

(III)

(IV)

Options:
(a) (I) $<$ (II) $<$ (III) $<$ (IV)
(b) (IV) $<$ (III) $<$ (II) $<$ (I)
(c) (IV) $<$ (II) $<$ (III) $<$ (I)
(d) (I) $<$ (III) $<$ (II) $<$ (IV)

Answer: (a)
Solution: Electron withdrawing groups increases the rate of nucleophilic substitution reaction, due to increase of electrophilic character of carbon involved in $\mathrm{C}-\mathrm{X}$ bond.

Question:

Statement 1: Hydrogen is most abundant in universe but not so in Earth's troposphere.
Statement 2: Hydrogen is the lightest element.
Options:
(a) Statement 1 is correct and Statement 2 is incorrect.
(b) Statement 1 is incorrect and Statement 2 is correct.
(c) Statement 1 is correct and Statement 2 is correct explanation for statement 1.
(d) Statement 1 is correct and Statement 2 is incorrect explanation for statement 1.

Answer: (c)
Solution: Due to light weight of hydrogen, it is not abundant in earth's troposphere.
Question: Which of the following salts help in blood clotting?
Options:
(a) FeCl_{3}
(b) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
(c) NaHCO_{3}
(d) FeSO_{4}

Answer: (a)
Solution: Blood being a colloidal solution its coagulation can be understood by HardySchulz's law which states that higher is the charge on cation, higher will be its efficiency to coagulate the colloidal solution.
In the present case, ferric chloride has Fe^{3+}. Hence, ferric chloride is more effective in enhancing the coagulation rate of blood and stop the bleeding from the cut.

Question: Match the following:

\mathbf{A}	B
(p) Al	(i) Siderite
(q) Zn	(ii) Malachite
(r) Fe	(iii) Calamine
(s) Cu	(iv) Bauxite

Options:

(a) $\mathrm{p} \rightarrow$ (iv); $\mathrm{q} \rightarrow$ (iii), $\mathrm{r} \rightarrow$ (i), $\mathrm{s} \rightarrow$ (ii)
(b) $\mathrm{p} \rightarrow$ (i); $\mathrm{q} \rightarrow$ (ii), $\mathrm{r} \rightarrow$ (iv), $\mathrm{s} \rightarrow$ (iii)
(c) $\mathrm{p} \rightarrow$ (iv); $\mathrm{q} \rightarrow$ (iii), $\mathrm{r} \rightarrow$ (ii), $\mathrm{s} \rightarrow$ (i)
(d) $\mathrm{p} \rightarrow$ (iii); $\mathrm{q} \rightarrow$ (iv), $\mathrm{r} \rightarrow$ (i), $\mathrm{s} \rightarrow$ (ii)

Answer: (a)
Solution:
Siderite - FeCO_{3}
Malachite $-\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$
Calamine - ZnCO_{3}
Bauxite - $\mathrm{Al}_{2} \mathrm{O}_{3}$
Question: What will be the magnetic moments (spin only values) of the following complexes?

$$
\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}, \mathrm{MnO}_{4}^{2-}
$$

Options:

(a) $\sqrt{3}, 0,0$
(b) $\sqrt{24}, 0, \sqrt{3}$
(c) $\sqrt{24}, \sqrt{24}, 0$
(d) $\sqrt{3}, 0, \sqrt{24}$

Answer: (b)

Solution:

$\left[\mathrm{FeCl}_{4}\right]^{2-} \Rightarrow \mathrm{Fe}^{2+} \Rightarrow 3 d^{6}$
$\mu=\sqrt{24}$ B.M
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \Rightarrow \mathrm{Co}^{3+} \Rightarrow 3 d^{6}$
$\mu=0$ B.M
$\mathrm{MnO}_{4}^{2-} \Rightarrow \mathrm{Mn}^{6+} \Rightarrow 3 d^{1}$
$\mu=\sqrt{3} B . M$
Question: Compare the wavelength in flame test for $\mathrm{LiCl}, \mathrm{NaCl}, \mathrm{KCl}, \mathrm{RbCl}, \mathrm{CsCl}$ Options:
(a) $\mathrm{NaCl}<\mathrm{CsCl}<\mathrm{LiCl}<\mathrm{RbCl}<\mathrm{KCl}$
(b) $\mathrm{CsCl}<\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{KCl}<\mathrm{RbCl}$
(c) $\mathrm{RbCl}<\mathrm{KCl}<\mathrm{LiCl}<\mathrm{CsCl}<\mathrm{NaCl}$
(d) $\mathrm{CsCl}<\mathrm{NaCl}<\mathrm{KCl}<\mathrm{LiCl}<\mathrm{RbCl}$

Answer: (b)
Solution:

Compound	Wavelength ($\boldsymbol{\lambda}$) (in nm)
LiCl	670.8
NaCl	584.2
KCl	766.5
RbCl	780
CsCl	455

Question: Choose incorrect statement:
Options:
(a) RuO_{4} is oxidizing agent
(b) OsO_{4} is reducing agent
(c) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is amphoteric
(d) Red colour of ruby is due to Co^{3+}

Answer: (b)
Solution: $\mathrm{OsO}_{4} \Rightarrow$ Maximum oxidation state (+8) Hence, it can get reduce and oxidise other species i.e. it is a oxidizing agent.

Question: Which of the following has highest M.P.?
Options:
(a) MgO
(b) LiF
(c) NaCl
(d) LiCl

Answer: (a)
Solution:
$\mathrm{MgO} \Rightarrow \mathrm{Mg}^{2+}, \mathrm{O}^{2-}$
Due to higher charge, ionic character will be high and hence, melting point also.
Question: Arrange the following in the increasing order of their density: $\mathrm{Zn}, \mathrm{Fe}, \mathrm{Cr}, \mathrm{Co}$ Options:
(a) $\mathrm{Zn}<\mathrm{Cr}<\mathrm{Co}<\mathrm{Fe}$
(b) $\mathrm{Fe}<\mathrm{Co}<\mathrm{Cr}<\mathrm{Zn}$
(c) $\mathrm{Fe}<\mathrm{Cr}<\mathrm{Co}<\mathrm{Zn}$
(d) $\mathrm{Zn}<\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}$

Answer: (d)
Solution:
Density $=\frac{\text { mass }}{\text { volume }}$
firstly, metallic radius of transition elements (first transition series) decreases from Sc to Ni then increases from Ni to Zn .

JEE-Main-24-02-2021-Shift-2

MATHEMATICS

Question: Given, $f(0)=1, f(2)=e^{2}, f^{\prime}(x)=f^{\prime}(2-x)$, then the value of $\int_{0}^{2} f(x) d x$ is Options:
(a) $1-e^{2}$
(b) $1+e^{2}$
(c) $3 e$
(d) e^{2}

Answer: (b)

Solution:

$f^{\prime}(x)=f^{\prime}(2-x)$
Integrate w.r.t. x
$f(x)=-f(2-x)+C$
Put $x=0$
$f(0)=-f(2)+C$
$1=-e^{2}+C$
$C=1+e^{2}$
$\therefore f(x)=-f(2-x)+1+e^{2}$
$\Rightarrow f(x)+f(2-x)=1+e^{2}$
Let, $I=\int_{0}^{2} f(x) d x$
$I=\int_{0}^{2} f(2-x) d x$
(ii) $+($ iii $)$
$2 I=\int_{0}^{2}[f(x)+f(2-x)] d x$
$2 I=\int_{0}^{2}\left(1+e^{2}\right) d x \quad($ from $(\mathrm{i}))$
$2 I=2\left(1+e^{2}\right)$
$\Rightarrow I=1+e^{2}$

Question: The area of region defined by $5 x^{2} \leq y \leq 2 x^{2}+9$
Options:
(a) $6 \sqrt{3}$
(b) $12 \sqrt{3}$
(c) $18 \sqrt{3}$
(d) $9 \sqrt{3}$

Answer: (b)

Solution:

Intersection points

$$
\begin{aligned}
& 5 x^{2}=2 x^{2}+9 \\
& 3 x^{2}=9 \\
& x^{2}=3 \\
& x= \pm \sqrt{3} \\
& \text { Area }=\int_{-\sqrt{3}}^{\sqrt{3}}\left(2 x^{2}+9-5 x^{2}\right) d x \\
& =2 \int_{0}^{\sqrt{3}}\left(9-3 x^{2}\right) d x \\
& =2\left[9 x-x^{3}\right]_{0}^{\sqrt{3}} \\
& =2(9 \sqrt{3}-3 \sqrt{3}) \\
& =12 \sqrt{3}
\end{aligned}
$$

Question: A plane is flying horizontally with speed $120 \mathrm{~m} / \mathrm{s}$. Its angle of elevation from a point on ground is 60°. After 20s angle of elevation is 30°. Find height of plane Options:
(a) $1200 \sqrt{3}$
(b) $2400 \sqrt{3}$
(c) $600 \sqrt{3}$
(d) $1500 \sqrt{3}$

Answer: (a)

Solution:

$\mathrm{AB}=h \cot 60^{\circ}=\frac{h}{\sqrt{3}}$
$\mathrm{AC}=h \cot 30^{\circ}=\sqrt{3} h$
$\mathrm{BC}=\mathrm{AC}-\mathrm{AB}=\sqrt{3} h-\frac{h}{\sqrt{3}}=120 \times 20$
$\Rightarrow \frac{2 h}{\sqrt{3}}=120 \times 20$
$\Rightarrow h=1200 \sqrt{3} m$

Question: Negation of the statement $\sim p \vee(p \wedge q)$ is

Options:

(a) $p \wedge \sim q$
(b) $p \vee \sim q$
(c) $\sim p \wedge q$
(d) $\sim p \vee \sim q$

Answer: (b)

Solution:

$\sim(\sim p \vee(p \wedge q))=p \wedge \sim(p \wedge q)$
$=$ only p

Question: Vertices of Δ are $(a, c),(2, b)$ and $(a, b), a, b, c$ are in A.P. centroid is $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are roots of $a x^{2}+b x+1=0$ then $\alpha^{2}+\beta^{2}-\alpha \beta=$
Options:
(a) $-\frac{71}{256}$
(b) $\frac{71}{256}$
(c) $\frac{69}{256}$
(d) $-\frac{69}{256}$

Answer: (a)

Solution:

a, b, c are in A.P. $\Rightarrow 2 b=a+c$
Centroid $=\left(\frac{2 a+2}{3}, \frac{2 b+c}{3}\right)=\left(\frac{10}{3}, \frac{7}{3}\right)$
$\Rightarrow \frac{2 a+2}{3}=\frac{10}{3} \Rightarrow a=4$
and $\frac{2 b+c}{3}=\frac{7}{3} \Rightarrow a+c+c=7($ from (i))
$\Rightarrow 2 c+4=7 \Rightarrow c=\frac{3}{2}$
Put in (i)
$2 b=4+\frac{3}{2}=\frac{11}{2}$
$b=\frac{11}{4}$
α, β are root of $a x^{2}+b x+1=0$
$\Rightarrow \alpha+\beta=\frac{-b}{a}=\frac{-11}{16}, \alpha \beta=\frac{1}{a}=\frac{1}{4}$
So, $\alpha^{2}+\beta^{2}-\alpha \beta=(\alpha+\beta)^{2}-3 \alpha \beta$
$=\left(\frac{-11}{16}\right)^{2}-\frac{3}{4}$
$=\frac{121-192}{256}=\frac{-71}{256}$
Question: If $\left|\begin{array}{ll}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0, f(x)=1, f^{\prime}(0)=2, f^{\prime \prime}(x) \neq 0$ then $f(1)$ lies in
Options:
(a) $(0,3)$
(b) $(6,9)$
(c) $[9,12]$
(d) $[5,7]$

Answer: (b)
Solution:
$f(x) f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2}=0$
$\Rightarrow \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}=\frac{f^{\prime}(x)}{f(x)}$
$\Rightarrow \int \frac{f^{\prime \prime}(x)}{f^{\prime}(x)} d x=\int \frac{f^{\prime}(x)}{f(x)} d x$
$\Rightarrow \log f^{\prime}(x)=\log f(x)+\log c$
$\Rightarrow f^{\prime}(x)=c f(x)$
Put $x=0$
$f^{\prime}(0)=c f(0)$
$\Rightarrow 2=c$
$\Rightarrow f^{\prime}(x)=2 f(x)$
$\Rightarrow \int \frac{f^{\prime}(x)}{f(x)} d x=\int 2 d x$
$\log f(x)=2 x+\mathrm{D}$
$f(x)=e^{\mathrm{D}} e^{2 x}$
$f(x)=\mathrm{K} e^{2 x} \quad\left(\right.$ Put $\left.e^{\mathrm{D}}=k\right)$
Put $x=0$
$f(0)=\mathrm{K}$
$\Rightarrow \mathrm{K}=1$
$\Rightarrow f(x)=e^{2 x}$
$\Rightarrow f(1)=e^{2}$
which lies in $(6,9)$

Question: The value of $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$ is

Options:

(a) $\frac{1}{\sqrt{7}}$
(b) $\frac{1}{\sqrt{5}}$
(c) $\frac{2}{\sqrt{3}}$
(d) none of these

Answer: (a)

Solution:

Let $\sin ^{-1} \frac{\sqrt{63}}{8}=\theta$
$\Rightarrow \sin \theta=\frac{\sqrt{63}}{8}$
$\Rightarrow \cos \theta=\frac{1}{8}$
$\Rightarrow \cos \frac{\theta}{2}=\sqrt{\frac{1+\cos \theta}{2}}=\sqrt{\frac{1+\frac{1}{8}}{2}}=\sqrt{\frac{9}{16}}=\frac{3}{4}$
So, $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)=\tan \left(\frac{\theta}{4}\right)$
$=\sqrt{\frac{1-\cos \left(\frac{\theta}{2}\right)}{1+\cos \left(\frac{\theta}{2}\right)}}=\sqrt{\frac{1-\frac{3}{4}}{1+\frac{3}{4}}}=\frac{1}{\sqrt{7}}$

Question: The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3,7,9$ (repetition of digits allowed) is equal to

Options:

(a) 250
(b) 374
(c) 372
(d) 375

Answer: (b)

Solution:

7 and 9 cannot occur at first place
Hence, required number of natural numbers less than 7000
$=3 \times 5 \times 5 \times 5-1=375-1=374$
(we have subtracted 1 for the case 0000 case)

Question: Find the value of ${ }^{n+1} C_{2}+2\left({ }^{2} C_{2}+{ }^{3} C_{2}+\ldots+{ }^{n} C_{2}\right)=$?

Options:

(a) $\frac{n(n+1)(2 n-1)}{6}$
(b) $\frac{n(n+1)(2 n+1)}{6}$
(c) $\frac{(n-1) n(n+1)}{6}$
(d) $\frac{n(n+1)}{2}$

Answer: (b)

Solution:

$S={ }^{2} C_{2}+{ }^{3} C_{2}+\ldots+{ }^{n} C_{2}={ }^{n+1} C_{3}$
$\therefore{ }^{n+1} C_{2}+{ }^{n+1} C_{3}+{ }^{n+1} C_{3}={ }^{n+2} C_{3}+{ }^{n+1} C_{3}$
$=\frac{(n+1)!}{3!(n-1)!}+\frac{(n+1)!}{3!(n-2)!}$
$=\frac{(n+2)(n+1) n}{6}+\frac{(n+1) n(n-1)}{6}=\frac{n(n+1)}{6}(2 n+1)$

Question: If A and B are subsets of $X=\{1,2,3,4,5\}$ then find the probability such that $n(A \cap B)=2$
Options:
(a) $\frac{65}{2^{7}}$
(b) $\frac{65}{2^{9}}$
(c) $\frac{35}{2^{9}}$
(d) $\frac{135}{2^{9}}$

Answer: (d)

Solution:

Required probability $=\frac{{ }^{5} C_{2} \times 3^{3}}{4^{5}}$
$=\frac{10 \times 27}{2^{10}}=\frac{135}{2^{9}}$

Question: A curve $y=f(x)$ passing through the point $(1,2)$ satisfies the differential equation $x \frac{d y}{d x}+y=b x^{4}$ such that $\int_{1}^{2} f(y) d y=\frac{62}{5}$. The value of b is

Options:

(a) 10
(b) 11
(c) $\frac{32}{5}$
(d) $\frac{62}{5}$

Answer: (a)

Solution:

$\frac{d y}{d x}+\frac{y}{x}=6 x^{3}$
I.F. $=e^{\int \frac{d y}{d x}}=x$
$\therefore y x=\int b x^{4} d x=\frac{b x^{5}}{5}+C$
Passes through (1,2), we get
$2=\frac{b}{5}+C$
Also, $\int_{1}^{2}\left(\frac{b x^{4}}{5}+\frac{C}{x}\right) d x=\frac{65}{2}$
$\Rightarrow \frac{b}{25} \times 32+C \ln 2-\frac{b}{25}=\frac{62}{5}$
$\Rightarrow C=0 \quad \& \quad b=10$

Question: A curve $y=a x^{2}+b x+c$ passing through the point $(1,2)$ has slope at origin equal to 1 , then ordered triplet ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) may be
Options:
(a) $(1,1,0)$
(b) $\left(\frac{1}{2}, 1,0\right)$
(c) $\left(-\frac{1}{2}, 1,1\right)$
(d) $(2,-1,0)$

Answer: (a)

Solution:

$2=a+b+c$
$\frac{d y}{d x}=2 a x+\left.b \Rightarrow \frac{d y}{d x}\right|_{(0,0)}=1$
$\Rightarrow b=1 \Rightarrow a+c=1$

Question: The value of $\int_{1}^{3}\left[x^{2}-2 x-2\right] d x$ ([.] denotes greatest integer function)
Options:
(a) -4
(b) -5
(c) $-1-\sqrt{2}-\sqrt{3}$
(d) $1-\sqrt{2}-\sqrt{3}$

Answer: (c)

Solution:

$I=\int_{1}^{3}-3 d x+\int_{1}^{3}\left[(x-1)^{2}\right] d x$
Put $x-1=t ; d x=d t$
$I=(-6)+\int_{0}^{2}\left[t^{2}\right] d t$
$I=(-6)+\int_{0}^{1} 0 d t+\int_{1}^{\sqrt{2}} 1 d t+\int_{\sqrt{2}}^{\sqrt{3}} 2 d t+\int_{\sqrt{3}}^{2} 3 d t$
$I=-6+(\sqrt{2}-1)+2 \sqrt{3}-2 \sqrt{2}+6-3 \sqrt{3}$
$I=-1-\sqrt{2}-\sqrt{3}$

Question: Which of the following conic has tangent ' $x+\sqrt{3} y-2 \sqrt{3}$, at point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$?

Options:

(a) $x^{2}+9 y^{2}=9$
(b) $y^{2}=\frac{x}{6 \sqrt{3}}$
(c) $x^{2}-9 y^{2}=10$
(d) $x^{2}=\frac{y}{6 \sqrt{3}}$

Answer: (a)

Solution:

Tangent to $x^{2}+9 y^{2}=a$ at point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$ is $x\left(\frac{3 \sqrt{3}}{2}\right)+9 y\left(\frac{1}{2}\right)=9$
Option (a) is true

Question: Equation of plane passing through $(1,0,2)$ and line of intersection of planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-2 \hat{j})=-2$ is

Options:

(a) $\vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$
(b) $\vec{r} \cdot(3 \hat{i}+10 \hat{j}+3 \hat{k})=7$
(c) $\vec{r} \cdot(\hat{i}+\hat{j}-3 \hat{k})=4$
(d) $\vec{r} \cdot(\hat{i}+4 \hat{j}-\hat{k})=-7$

Answer: (a)

Solution:

Plane passing through intersection of plane is

$$
\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=-1\}+\lambda\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0
$$

Passing through $\hat{i}+2 \hat{k}$, we get
$(3-1)+\lambda(\lambda+2)=0 \Rightarrow \lambda=-\frac{2}{3}$
Hence, equation of plane is $3\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1\}-2\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0$
$\Rightarrow \vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$

Question: A is 3×3 square matrix and B is 3×3 skew symmetric matrix and X is a 3×1 matrix, then equation $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=0$ (Where O is a null matrix) has/have

Options:

(a) Infinite solution
(b) No solution
(c) Exactly one solution
(d) Exactly two solution

Answer: (a)

Solution:

$\mathrm{A}^{\mathrm{T}}=\mathrm{A}, \mathrm{B}^{\mathrm{T}}=-\mathrm{B}$
Let $A^{2} B^{2}-B^{2} A^{2}=P$
$P^{T}=\left(A^{2} B^{2}-B^{2} A^{2}\right)^{T}=\left(A^{2} B^{2}\right)^{T}-\left(B^{2} A^{2}\right)^{T}$
$=\left(B^{2}\right)^{T}\left(A^{2}\right)^{T}-\left(A^{2}\right)^{T}\left(B^{2}\right)^{T}$
$=B^{2} A^{2}-A^{2} B^{2}$
$\Rightarrow \mathrm{P}$ is skew-symmetric matrix
$\Rightarrow|\mathrm{P}|=0$
Hence $\mathrm{PX}=0$ have infinite solution

Question: Find a point on the curve $y=x^{2}+4$ which is at shortest distance from the line $y=4 x-1$.
Options:
(a) $(2,8)$
(b) $(1,5)$
(c) $(3,13)$
(d) $(-1,5)$

Answer: (a)

Solution:

$\left.\frac{d y}{d x}\right|_{p}=4$
$\therefore 2 x_{1}=4$

$\Rightarrow x_{1}=2$
\therefore Point will be $(2,8)$

Question: Let $f(x)=\left\{\begin{array}{clc}-55 x & ; & x<-5 \\ 2 x^{3}-3 x^{2}-120 x & ;-5 \leq x<4 \\ 2 x^{3}-3 x^{2}-36 x+10 & ; & x \geq 4\end{array}\right.$
Then interval in which $\mathrm{f}(\mathrm{x})$ is monotonically increasing is

Options:

(a) $(-5,-4) \cup(4, \infty)$
(b) $(-\infty,-4) \cup(5, \infty)$
(c) $(-5,4) \cup(5, \infty)$
(d) $(-5,-4) \cup(3, \infty)$

Answer: (a)

Solution:

$f^{\prime}(x)=\left\{\begin{array}{ccc}-55 & ; & x<-5 \\ 6\left(x^{2}-x-20\right) & ; & -5<x<4 \\ 6\left(x^{2}-x-6\right) & ; & x>4\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{ccc}-55 & ; & x<-5 \\ 6(x-5)(x+4) & ; & -5<x<4 \\ 6(x-3)(x+2) & ; & x>4\end{array}\right.$
Hence, $f(x)$ is monotonically increasing is $(-5,-4) \cup(4, \infty)$

Question: If variance of ten numbers $1,1,1,1,1,1,1,1,1, k$; where $k \in N$, is less than or equal to 10 then maximum value of k is.
Answer: 11.00

Solution:

var ≤ 10
$\frac{9\left(1^{2}\right)+k^{2}}{10}-\left(\frac{9+k}{10}\right)^{2} \leq 10$
$90+10 k^{2}-81-k^{2}-18 k \leq 1000$
$9 k^{2}-18 k \leq 991$
$9 k(k-2) \leq 991$
$\therefore k \in N$
\therefore By hit and trial we observe that max. value of k is 11 .

Question: If $a+\alpha=1, \beta+b=2$ and $a(f(x))+\alpha\left(f\left(\frac{1}{x}\right)\right)=\frac{\beta}{x}+b x$, then find value of

$$
\frac{\left[f(x)+f\left(\frac{1}{x}\right)\right]}{x+\frac{1}{x}}=
$$

Answer: 2.00

Solution:

Take $a=\alpha=\frac{1}{2}$ and $b=\beta=1$
Now, $a(f(x))+\alpha\left(f\left(\frac{1}{x}\right)\right)=\beta x+\frac{b}{x}$
$\Rightarrow \frac{1}{2}\left[f(x)+f\left(\frac{1}{x}\right)\right]=x+\frac{1}{x}$
$\Rightarrow \frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}=2$

Question: $(x-2)^{2}+(y-3)^{2}=25$, Normal and tangent are drawn to it at $(5,7)$. Area of Δ made by normal, tangent and x - axis is A. Find 24A.
Answer: 1225.00

Solution:

Equation of normal at $\mathrm{P}(5,7)$
$y-7=\frac{7-3}{5-2}(x-5)$
$y-7=\frac{4}{3}(x-5)$
Put $y=0$
$-21=4 x-20$
$4 x=-1$
$x=\frac{-1}{4}$
$\Rightarrow \mathrm{B}\left(\frac{-1}{4}, 0\right)$
Equation of tangent at $\mathrm{P}(5,7)$
$y-7=\frac{-3}{4}(x-5)$
Put $y=0$
$-28=-3 x+15$
$\Rightarrow 3 x=43 \Rightarrow x=\frac{43}{3}$
$\Rightarrow \mathrm{C}\left(\frac{43}{3}, 0\right) \Rightarrow \mathrm{BC}=\frac{43}{3}+\frac{1}{4}=\frac{175}{12}$
So, $24 \mathrm{~A}=24 \times \frac{1}{2} \times \frac{175}{12} \times 7=1225$

Question: Sum of first four terms of $G . P=\frac{65}{12}$. Sum of their reciprocals is $\frac{65}{18}$. Product of first 3 terms is 1 . If $3^{\text {rd }}$ term is $\alpha, 2 \alpha=$
Answer: 3.00

Solution:

Let G.P. is
$\frac{a}{r}, a, a r, a r^{2}$
Now, $\frac{a}{r} \cdot a \cdot a r=1 \Rightarrow a^{3}=1 \Rightarrow a=1$
Also, $\frac{a}{r}+a+a r+a r^{2}=\frac{65}{12}$
$\Rightarrow \frac{1}{r}+1+r+r^{2}=\frac{65}{12}$
$\Rightarrow \frac{1+r+r^{2}+r^{3}}{r}=\frac{65}{12}$
And $\frac{r}{a}+\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^{2}}=\frac{65}{18}$
$\Rightarrow r+1+\frac{1}{r}+\frac{1}{r^{2}}=\frac{65}{18}$
$\Rightarrow \frac{r^{3}+r^{2}+r+1}{r^{2}}=\frac{65}{18}$
$\frac{\text { (i) }}{\text { (ii) }} \Rightarrow \frac{r^{2}}{r}=\frac{18}{12}$
$\Rightarrow r=\frac{3}{2}$
$\therefore 3^{\text {rd }}$ term $=\alpha=a r=\frac{3}{2}$
$\therefore 2 \alpha=3$
Question: $S_{1}, S_{2}, \ldots ., S_{10}$ are 10 students, in how many ways they can be divided in 3 groups A, B and C such that all groups have atleast one student and C has maximum 3 students.
Answer: 31650.00

Solution:

Case 1: C gets exactly 1 student

$$
\Rightarrow{ }^{10} C_{1} \times\left(2^{9}-2\right)=10 \times 510=5100
$$

Case 2: C gets exactly 2 students

$$
\Rightarrow{ }^{10} C_{2} \times\left(2^{8}-2\right)=11430
$$

Case 3: C gets exactly 3 students
$\Rightarrow{ }^{10} C_{3} \times\left(2^{7}-2\right)=15120$
Total number of ways $=5100+11430+15120=31650$

Question: $A(5,0)$ and $B(-5,0)$ are two points $P A=3 P B$. Then locus of P is a circle with radius ' r '. Then $4 r^{2}=$
Answer: 525.00

Solution:

Let $P(h, k)$

$$
\begin{aligned}
& P A=3 P B \Rightarrow P A^{2}=9 P B^{2} \\
& \Rightarrow(h-5)^{2}+k^{2}=9\left[(h+5)^{2}+k^{2}\right] \\
& \Rightarrow h^{2}+25-10 h+k^{2}=9 h^{2}+225+90 h+9 k^{2} \\
& \Rightarrow 8 h^{2}+8 k^{2}+100 h+200=0
\end{aligned}
$$

$\Rightarrow h^{2}+k^{2}+\frac{25}{2} h+25=0$
So, locus is
$x^{2}+y^{2}+\frac{25}{2} x+25=0$
Its radius $=\sqrt{\left(\frac{25}{4}\right)^{2}-25}$
$\Rightarrow r=\sqrt{\frac{622-400}{16}}=\frac{15}{4}$
$\Rightarrow 4 r^{2}=4\left(\frac{225}{16}\right)=\frac{225}{4}$

